167

AMERICAN CHEMICAL SERVICE SITE TREATABILITY STUDY WORKSHOP

Presented by: Focus Environmental, Inc.

Workshop Agenda

- Introductions
- ROD Remedy
- Previous Quantity Estimates
- Pretreatment/Materials Handling Study
- Thermal Desorption Technology Overview
- Thermal Desorption Treatability Study
- Application of Results
- Conclusions

Focus Environmental, Inc.

- Established 1988
- 25 Employees (mostly Chemical Engineers)
- Thermal Treatment Consulting Services
 - Process Design and Evaluation
 - Treatability Studies
 - Remedial Design
 - Remedial Action Oversight
 - Performance Testing
- Engineering Services for Thermal Treatment Applications on 50 CERCLA Sites
- EPA START Contractor

William L. Troxler, P.E.

- Principal and VP with Focus Environmental, Inc.
- P.E. Tennessee, North Carolina, New York
- Engineering Services on 45 Sites Using Thermal Technologies
- Author/Contributor on 8 Thermal Desorption Guidance Documents
- Chairman AEEE Thermal Desorption Committee

Paul A. Sadler

- Consultant with Focus Environmental, Inc.
- Engineering Services on 15 Sites Using Thermal Technologies
- Treatability Testing on 7 CERCLA Sites
- Remedial Design for Thermal Applications on 3 CERCLA Sites
- Focus Project Manager for ACS Site
- Focus Project Manager for Arlington Blending and Packaging Site (45,000 tons of Pesticide-Contaminated Soil)

Focus' Role on ACS Project

- Pretreatment and Material Handling Study
- Thermal Treatability Study
- Thermal Technology Evaluation

Selected Focus Experience Thermal Treatment Applications

- Times Beach (MO)
- Aberdeen Pesticide Dumps Site (NC)
- · Petro Processors (LA) may be similar to ALS- drans/volable
- Arlington Blending (TN)
- Rocky Mountain Arsenal (CO)
- Vertac (AR)
- TH Agriculture & Nutrition (GA)

COMPARISON WITH TYPICAL LTTT SITES

Parameter	Typical Site	ACS Site
Quantity of Soil (tons)	15,000	126,000 - 339,000 -
Total Organic Content	< 1%	12% (average)
n Debris	None	> 35 vol%
Drums	None	~ 50,000
Chlorine Content (mg/kg)	< 200	1,600
Sulfur Content (mg/kg)	None	1,100
Heating Value (Btu/lb)	< 200	~ 1,000

Garage

ROD Remedy - "In-Situ" Waste Types

- Buried Drums (Off-site Incineration)
- Miscellaneous Debris (Steam Clean/Offsite Disposal)
- "Buried Waste" (LTTT)
 - PCBs > 10 mg/kg
 - VOCs > 10,000 mg/kg
- "Contaminated Soil" (ISVE or LTTT)
- Metals Contaminated Soil (LTTT, ISVE, Immobilization, Offsite Disposal)
 - Lead > 500 mg/kg
 - Other Metals (antimony, barium, cadmium, chromium)

Pretreatment and Materials Handling Study

- Determine Extent of Buried Drums in Offsite Area
- Evaluate Type, Quantity, and Screenability of Debris
- Collect Samples for Thermal Treatability
 Study
- Characterize Representative Samples from Site

On-Site
 Containment Area

Still Bottoms Area

Off Site
 Containment Area

Kapica-Pazmey
 Drum Recycling

Pretreatment/Materials Handling Study Activities

- Initial Investigations (May, 1997)
- Revised Strategy and Objectives
- Resume Investigations (July, 1997)
- Investigatory Trenches to Locate Drums
- Test Pits for Screening Studies
- Sample Collection (Soils and Liquids)
- Ambient Air Sampling
- Draft Report to EPA (October, 1997)

COMPARISON OF PMHS AND RI RESULTS

Contaminant	MAX	PMHS Median	RI Median
VOC's (mg/kg)	9660	589	50° 20,700
SVOC's (mg/kg)	174	61	3,181
PCB's (mg/kg)	2770	48	25 ⁰ 37
	1990.91	(997	1990-91 1997

	POTENTIAL FU	JGITIVE LOSSES	
	Soil Concentrations		
Analyte	Starting (mg/kg)	Ending (mg/kg)	% Removal
Total VOC's	5,242	< 1,431	> 73

Estimated Waste Quantity Comparison

	Units	ROD	Current Quantity Estimates	
Waste Type		Estimate	Low Range	High Range
Off-site Disposal				
- Buried Drums	Drums	500	50,000	60,000
- Miscellaneous Debris	yd ³	NS	56,000	80,400
- Metals Contaminated Soil (a)	yd ³	2,500	41,000	49,200
On-site Treatment				
- LTTT	yd³	19,000	84,000	163,800

NS - Not Specified

Notes:

a) The metals contaminated soil is a subset of the LTTT soils.

Thermal Desorption Implementation General Issues

- 400 800% Increase in Waste Quantity for LTTT over ROD Estimate
- 10,000% Increase in Number of Drums Requiring Off-site Incineration
- 40 70% of Materials Require Off-site Disposal
- Potentially High Fugitive VOC Emissions
- Extreme Materials Handling Challenges

Thermal Desorption Technology Overview

- Definitions
- Types of thermal desorbers
- Types of emission control systems

Thermal Desorber Components

- Primary Heating Chamber
 - Directly Heated
 - Indirectly Heated
- Emission Control System
 - Recovery-type
 - Destructive-type

Thermal Treatability Study

- Establish Potential Soil Treatment Temperatures
- Characterize Offgas from Thermally Treated Soils
- Estimate Quantity of Process Residuals
- Perform Preliminary Process Safety Evaluation

Thermal Treatability Study Tiered Approach

- Sample Collection and Characterization
- Tray Testing
 - Small soil quantity (~100 grams)
 - Establish soil treatment temperature requirements
- Rotary Thermal Apparatus Testing
 - Larger soil quantities (~900 grams)
 - Characterize treated soils
 - Characterize offgas from thermally treated soils

Tray Testing Results

- Met Soil Treatment Objectives at 900 F for All Parameters Except CPAHs
- Performance Standard for CPAHs is 1,000
 Times Below Analytical Detection Limit

Thermal Desorption Implementation Process Issues

- Very High Carbon Monoxide and Total Hydrocarbon Emissions and Extreme Residual Quantities Eliminates Recovery Systems
- Process Safety Concerns Related to Exceeding Lower Explosive Limits Eliminates Indirect or Directly Heated systems
- High Corrosion Potential From Chlorine and Sulfur
- Fouling of Emission Control System Components

Figure 4-15. RTA Offgas Profile : RTA1 Worst Case Soil, Air Purge, 900°F

Offgas Concentration (ppmv)

CARBON PARTITIONING

Air Pollution Control System

"LOWER EXPLOSIVE LIMIT" CONCENTRATIONS

		Desorber Offgas	
Parameter	25% of LEL (vol%)	Indirectly Heated (vol%)	Directly Heated (vol%)
Organic Carbon	0.5 - 1.3	5	2.5

COMPARISON WITH TYPICAL LTTT SITES

Parameter	Typical Site	ACS Site	
Quantity of Soil (tons)	15,000	126,000 - 339,000	
Total Organic Content	< 1%	12% (average)	
Debris	None	> 35 vol%	
Drums	None	~ 50,000	
Chlorine Content (mg/kg)	< 200	1,600	
Sulfur Content (mg/kg)	None	1,100	
Heating Value (Btu/lb)	< 200	~ 1,000	
Activated Carbon Utilization (tons)	20 - 40	10,000 - 30,000	

compare2

ACS NPL Site RD/RA

American Chemical Service National Priorities List Site Remedial Design / Remedial Action

ACS in Griffith, Indiana

Overview of Site History

- Solvent Reclamation Business
- ◆ Investigation & Characterization
- ◆ Record of Decision (ROD)
- ◆ Remediation
 - Current Remedial Steps
 - Final Remediation (Future)

Areas of Buried Waste On-Site Containment Area Still Bottoms Area Facility Off-Site Containment Area Kapica-Pazmey Drum Recycling Area Griffith Town Landfill

clay 10-30' => Our records indicate 2'therest of fractiones.

History - Solvent Reclamation

- ◆ 1955 Began Solvent Distilling Business
- ◆ 1975 Began Off-Site Disposal of Waste
- ◆ 1987 ACS placed on the NPL

History - Site Investigation

1991 - Remedial Investigation Defined Character & Extent of Contamination

History -- Changed Approach

1992 Feasibility Study

SVOCs not removed.

Only Solid & Liquid Waste would be removed -- Everything else would be treated by ISVE --

- 2. PCB's greater than 50 ppm would
- Metal-containing Soil would be fixated & landfilled on-site
- Miscellaneous Debris would be landfilled off-site
- 5. Drums taken off-site for disposal

1992 ROD

- All Waste & Soil to be treated to meet specific clean-up standards for both VOCs & SVOCs.
- PCB's greater than 10 ppm to be treated to 2 ppm
- Metal-containing Soil to be fixated and landfilled off-site.
- Miscellaneous Debris steamcleaned and landfilled off-site.
- 5. Drums taken off-site for disposal

History --RD/RA Work Plan (1995)

Remedial Components

- Low Temperature
 Thermal Treatment
 of Buried Waste
- Treatment of Contaminated Groundwater

Pre-Design Investigations

- Evaluate the Treatability of Buried Waste by LTTT
- Refine Delineation of Contaminated Groundwater

Expedited Remedial Steps

- ◆ Construct Perimeter Groundwater Containment System (PGCS)
- ◆ Construct Barrier Wall and Extraction System (BWES)
- Construct Water Treatment Plant

Installing PGCS Extraction Trench

50 gpm = chemical 42 gpm

Geologic Setting

Extraction Trench Installer

Installing HDPE and Bentonite Slurry Barrier Wall

The Barrier Wall is keyed into underlying clay layer

PGCS & BWES Treatment Plant

Treatment Plant Process Diagram

Phase Separator

- ◆ Influent water from inside the Barrier Wall passes through the phase separator.
- Separated liquids are held in lower tank for off-site disposal

Ultra-violet Oxidation

UV-Ox Unit
Reduces Organic
Compounds to
Carbon Dioxide,
Water, and Salts

Shallow Tray Air Stripping Unit

Air Stripping
 Capacity has been added to the original design to remove residual VOCs and reduce consumption of GAC

Chemical Precipitation

- Metals removed with precipitator
- ◆ Fine Particulates are floculated in clarifier and settled out
- Sludge is collected in Tank T5, (not in photo) for later pressing and offsite disposal

Sand Filter

 After leaving the clarifier, the water flows in at the bottom of the sand filter, pushing up through the sand, coming out clear at the top.

Granular Activated Carbon Final Polish

Treated Water is Released to Wetland

Sludge De-Watering Press for removed solids

After pressing, filter cake is sent offsite for disposal

Acid & Base Buffering Pumps and Storage

◆ Enox catalyst for UV-Ox Reaction

Computer Monitoring & Control

The Groundwater
Treatment System is
controlled through
custom designed manmachine interface

The system can be controlled directly at this computer, or via modem

Interim Remediation

PGCS & BWES

Objective:

Limit Further Off-Site Migration of Contaminants

Trends at MW6

6 months - operating 30-40 gpm.